Monday, November 27, 2017

Mosses of Central Florida 40. Vesicularia vesicularis

Vescicularia vesicularis growing at Castellow Hammock,
Miami-Dade County. Photo by Scott Zona
Vesicularia vesicularis (Schwagrichen) Brotherus (Hypnaceae) is a creeping
moss found on moist soil, logs, rocks, and sometimes submerged in running water.  The ovate, smooth-edged leaves lack a midrib, but may have two very short ribs at the base. Leaf cells are oval to diamond-shaped in the upper leaf, somewhat smaller and roundish at the base.  The spore capsules are symmetrical and short-cylindric, becoming constricted below the opening when dry, and are nodding by a bend in the upper stalk.

The capsules of Vesicularia are nodding or slightly skewed to the side, but not asymmetric like
Isopterygium.  Photo by Scott Zona.
This species is similar in habit and general appearance to the common Isopterygium tenerum, which is also in the Hypnaceae, from which it differs most clearly by the shape of the leaf cells and the spore capsules.  In Isopterygium, the leaf  is more drawn out into a narrow tip, which is somewhat toothed, and the leaf cells are elongate and worm-like.  The capsules in Isopterygium are asymmetric and bent to the side like a bird's head.

This is a tropical species found throughout the new world tropics. In the U.S. it is found only in Florida and Louisiana. In Florida it has been collected in scattered locations throughout the peninsula and in Santa Rosa County.

Friday, November 17, 2017

Mosses of Central Florida 39. Barbula indica

A dried specimen of Barbula indica,
showing the leaves twisted around the
stems. (from  Merner s.n. 20 Sep 1970,
USF)
Barbula indica (Hooker) Sprengel (Pottiaceae) forms cushions of upright stems as high as 1.2 cm, mostly on limestone rocks. The leaves are narrow-ovate in shape and clearly grooved on the upper surface along the strong midrib, spreading when wet but rolled together and twisted when dry.  Leaf cells are roundish and papillose, with larger clear cells at the base.  Spore capsules are rarely seen in Florida, but when present are upright, more or less symmetrical, and have  long, twisted teeth around the opening.

A piece of limestone with Barbula indica and Hyophiladelphus agraria (with orange capsule stalks near the top) From Newberry s.n. 25 Feb 1971, USF.
This species, usually differentiated as Barbula indica variety indica, is found throughout the world, including much of eastern North America, Alaska and the Canadian Northwest Territories.  In Florida, it has been collected spottily throughout the state.  Another variety,  B. indica var gregaria is found widely in tropical America, but oddly only in Alberta, Canada in North America.

The family Pottiaceae, at least in central Florida, can be recognized by its upright, radially symmetrical shoots, with papillose leaves, and most often occurring on limestone.  Other central Florida genera in the Pottiaceae include Weissia, which has short, rosette-like leafy shoots with narrow, sword-shaped leaves that are strongly inrolled at the edges, and capsule teeth that are short and straight. It is also more likely found on soil.  Hyophiladelphus occurs also on limestone rocks, sometimes mixed with Barbula, and also has long twisted teeth around the opening of the capsule, but has short, rosette-like shoots, and leaves that are only rarely papillose. Tortella  is also similar but the leaves have a very distinctive V-shaped pattern of clear basal cells.

Friday, November 10, 2017

Mosses of Central Florida 38. The genus Neckeropsis

A single leafy shoot of Neckeropsis
disticha
, showing the broad, blunt-tipped
leaves, arranged alternately on the two
sides of the stem. Photo from a rehydrated
herbarium specimen, (Lassiter 892
(USF))
Two species of Neckeropsis (Neckeraceae) occur in Florida: Neckeropsis disticha (Hedwig) Kindberg (Neckeraceae) and Neckeropsis undulata (Hedwig) Reichardt. The two species have a similar growth form, what has been described as "shelf-forming," with flattened, fern-like  leafy shoots that extend horizontally from their attachment to the sides of tree trunks, logs, and sometimes rocks.

The leaves are broad and blunt-tipped, with midribs that don't reach the tip. Leaf cells are roundish near the tip, but more elongate further down. The spore capsules, shaped like champagne glasses, are essentially stalkless, and located along the leafy shoots, nestled within crowns of narrow, bract-like leaves.






The leaves of Neckeropsis undulata are distinctively rippled. Photo by Elizabeth Lavocat Bernard.
The spore capsules of Neckeropsis disticha are scarcely
pushed beyond the leaves by their very short stalks.
Photo by Elizabeth Lavocat Bernard.
Both species of this pantropical genus are found in Florida from Citrus and Semiole Counties southward.  They differ most conspicuously in their leaves.  Those of Neckeropsis undulata are rippled, like crisped ribbons, while those of N. disticha are more or less flat when wet, or slightly wavy when dry.
The spore capsules of Neckeropsis undulata are distinctly
larger than those of N. disticha.  Photo by Elizabeth
Lavocat Bernard.



I am grateful to Elizabeth Lavocat Bernard for permission to use photographs from a blog article on the bryophytes of Guadaloupe on the website MOVECLIM (MOntane VEgetation as listening posts for CLIMate change).

An additional interesting photo displaying the shelf-like growth pattern of this genus can be viewed at:
Neckeropsis undulata by Scott Zona

Wednesday, November 8, 2017

Mosses of Central Florida 37. The genus Thelia

The leafy shoots of Thelia resemble the the scaly shoots of
junipers.  All photos are of T. asprella, and taken by
Robert A. Klips, Ohio Moss and Lichen Association.
The three species of Thelia (Theliaceae) found in Florida have distinctive juniper-like leafy shoots, with short, scale-like leaves that are pressed to the stem even when wet. They include  Thelia asprella (Schimper) Sullivant, T. hirtella  (Hedwig) Sullivant, and T. lescurii Sullivant.  The first two species occur primarily as spreading mats at the bases or trunks of trees, on rotting logs, or soil, but T. lescurii occurs only on soil or thin soil over rocks.
The spore capsules of Thelia are upright, cylindrical and
symmetrical.
The short, stiff leaves typically have only rudimentary, usually forked, midribs at their bases, and the margins are raggedly toothed. Leaf cells are roundish or somewhat elongate, with distinct, columnar papillae. Spore capsules are upright, cylindrical, and symmetrical or slightly curved, atop  stalks that are usually little more than a centimeter high.
The short, broad leaves of Thelia species have ragged edges and elongate papillae.

All three species are found throughout the eastern U.S., including the northern 2/3rds of Florida, though T. lescurii is less common.

Thelia hirtella is distinguished primarily by its simple papillae, as opposed to the branched, compound papillae of the other two species.  In T. lescurii, the leafy shoots are only sparsely branched and tend to be more upright, as opposed to T. asprella, in which the stems spread more horizontally and are densely branched.

The species of Thelia might be confused with Entodon seductrix, which has similar, scale-like leaves, but the leaves of the latter are smooth-margined or with a few small teeth at the tip, and the cells are long, worm-like, and without papillae.

Wednesday, November 1, 2017

Mosses of Central Florida 36. Weissia controversa


A colony of Weissia controversa growing as a low cushion
on landscape fabric around a live oak tree on the campus of
the University of South Florida in Tampa.
Weissia controversa Hedwig (Pottiaceae) is a rosette moss, (i.e. with upright,
short-stemmed shoots, with leaves in a circular arrangement, like a rose), that forms extensive colonies on disturbed soil or sometimes rocks.  The leaves are elongate with a strong midrib that extends beyond the tip in a sharp point.  It is most distinctive in the margins of the leaves that roll tightly inward onto the upper surface (involute). 

The margins of  the long, narrow leaves of
Weissia spp. are distinctively rolled over
the upper surface.
Leaf cells are small, roundish, and papillose (with small, forking bumps), except at the base, where they are larger, rectangular and clear.
Leaf cells are compact, roughly circular, on ether side of the
prominent midrib.

Spore capsules are upright, symmetrical, goblet-shaped, dark brown when mature, and elevated on stalks up to .8 cm in length.
The spore capsules of Weissia controversa are dark brown at maturity, and broadest at the top, like a wine goblet. Most of the capsule here, however, are still topped by their short, beaked lids, or opercula, and some by the outer green sheathes (calyptras).

Weissia controversa is found in nearly every state and province in North America, including Greenland, and in Florida it has been well collected south to Manatee and St. Lucie Counties, but also with reports from Miami-Dade County.

Weissia jamaicensis (Mitten) Grout is a related species, with a more tropical and warm-temperate distribution, found in Florida, Georgia, westward to New Mexico, and north to Missouri, but  not in the Carolinas.  In Florida, it appears to overlap the distribution of W. controversa, but has been much more sparsely collected.  It differs in that the tip of the leaf is usually hood-like, and the base of the leaf flares out into broad shoulders.

Weissia ludoviciana and W. muehlenbergiana  are found throughout eastern N. America and in north Florida.

From other genera in the Pottiaceae, aside from the involute margins, Weissia species differ in their long, narrow leaves. Tortella species are somewhat similar, but not distinctly involute along their margins except sometimes at the tips.  Tortella also differs in the distinct V-shaped region of large, clear cells at the base of the leaf.


Thursday, October 26, 2017

Mosses of Central Florida 35. Pyrrhobryum spiniforme

Pyrrhobryum spiniforme growing in Hawaii.  Photo by Alan Cressler.

Pyrrhobryum spiniforme (Hedwig) Mitten (Rhizogoniaceae) is a distinctive moss with upright to leaning leafy shoots with narrow, spiny leaves.  The elongate leaves have a strong, conspicuous midrib, and are conspicuously toothed, particularly at the tip and even on the lower side of the midrib.  Leaf cells are roundish, with thick walls

This species occurs mostly at tree bases and on rotting logs. The fresh leafy shoots have a feathery appearance, and the leaves become somewhat twisted or curved when dry. The spore capsules are bent to the side, resembling the heads of birds.  Stalks of the capsules arise from near the bases of the leafy shoots.
The narrow leaf has a strong,
conspicuous midrib, and
prominent teeth along the
margins.
A dried specimen of Pyrrhobryum spiniforme,
from Lassiter 643 (USF)




A closer view of the spiny leaf margin and roundish cells of Pyrrhobryum
spiniforme.
Pyrrhobryum spiniforme is 
widespread around the world
in the tropics, and in North America is found in Florida and the southern parts of Georgia and the Gulf states to Louisiana. In Florida, we have collections only from Highlands County northward into the panhandle, though it might be expected further south with further exploration.

This species was formerly known as Rhizogonium spiniforme, and often filed under that name.  


Monday, October 23, 2017

Mosses of Central Florida 34. Callicostella pallida

The branching leafy shoots of Callicostella pallida adhere closely to this piece
of decaying wood. Photos from Lassiter 2028 and 2029 (USF).
Callicostella pallida (Hornschuch) Ångström (Pilotrichaceae) is a small, creeping moss found on tree
bases, exposed roots, rotting logs, limestone, and occasionally on submerged rocks, often in deep shade. The indefinite, branching leafy shoots cling closely to their substrate. The ovate to elliptical leaves are distinctive for their double ribs, which don't reach to the tip.  Leaf cells are roundish to rectangular, with distinctive papillae, at least near the leaf tip. Spore capsules are symmetrical, somewhat swollen but narrowed below the expanded tip, and turned sideways by a bend in the upper stalk.

Callicostella pallida can readily be recognized by the unusual double ribs.
This species, sometimes filed under the older name, Schizomitrium pallidum, so far is known from Louisiana, Alabama and Florida.  In Florida, it is found from Alachua and Clay Counties southward.

From other members of the family Pilotrichaceae, including Cyclodictyon varians, found in north Florida, with an unverified report from Hillsborough County, Callicostella differs by its more rounded and papillose leaf tip.
The spore capsules are swollen but constricted below the larger tip, and
bent to the side by a hook near the top of the stalk.
The cells at the tip of the leaf are papillose, i.e. contain small, hard,
translucent bumps, seen here as tiny, yellowish bright spots.


Thursday, October 19, 2017

Mosses of Central Florida 33. Rhynchostegium serrulatum

A spreading colony of Rhynchostegium serrulatum.  All
photos by Robert A.Klips, Ohio Moss and Lichen Association.
Rhynchostegium serrulatum (Hedwig) A. Jaeger (Brachytheciaceae) is a spreading, mat-forming
Leaves are notably toothed and the midrib peters out before
the tip. Cells are long and worm-like.
moss found on soil, rotting wood, and tree bases. Leafy stems grow indefinitely with numerous leaves spreading mostly to the two sides of the stem.  Spore capsules arise from along the stems, and are strongly curved.  Leaves are spiny along the margins, particularly toward the tip.  The midrib is relatively weak, generally not reaching the tip.  Leaf cells are elongate and curved, with thick walls, what I often refer to as worm-like.
Spore capsules are strongly arched, with
a swollen tip.

From it's bent spore capsules and spreading leafy stems, this species could be mistaken for the common Isopterygium tenerum. Even the elongate, worm-shaped leaf cells are similar.  But the most obvious difference is the presence of a midrib here, which is lacking in Isopterygium and the greater number of teeth along the leaf margin.  The capsules of Rhynchostegium are also more slender and more bent, almost into a U-shape, but with the tip enlarged and more cone-shaped.  Differences between the Brachystegiaceae and the Hypnaceae, to which Isopterygium belongs, are obscure and technical.

Rhynchostegium serrulatum is found throughout eastern North America, as far west as New Mexico, and north to Ontario and Quebec. In Florida, it appears to be distributed throughout the state.  Gaps in county records are more likely due to lack of collections than absence of the species.

Tuesday, October 17, 2017

Mosses of Central Florida 32. Trematodon longicollis

Trematodon longicollis Michaux (Bruchiaceae) is a fast-growing moss that
colonizes bare soil, forming small clumps.  Stems are short, upright, and bear a few narrow, elongate leaves.  The massive midrib extends to the tip of the leaf.  Leaf cells in the narrow blade on either side of the midrib are irregularly squarish.

Trematodon longicollis appears on bare soil.  This colony appeared in a flower bed that had been turned over just a few weeks earlier.  Note the thick, tapering neck below the more swollen spore chamber.
The most distinctive feature of this moss is the thick, tapering neck below the spore chamber of the capsule.  The neck in this species occupies about 2/3 the length of the capsules, which are curved slightly to the side atop long stalks.
On either side of the massive midrib, one can see the irregular
cells of the blade, that range from squarish to triangular.
Trematodon longicollis occurs in the eastern U.S. as far west as Texas and
Oklahoma, and to Pennsylvania in the north.  In Florida, it has been collected spottily throughout the state.


Friday, October 13, 2017

Mosses of Central Florida 31. Ephemerum crassinervium

The tiny rosettes of Ephemerum crassinervium
appear scattered on a mass of green,
thread like stems (protonemata). Photo by Robert
A. Klips, Ohio Moss and Lichen Association.
Ephemerum crassinervium (Schwaegrichen) Hampe (Ephemeraceae) is a tiny moss that is often overlooked.  As the name implies, it is an ephemeral plant that pops up in disturbed soil along drying shorelines in the dry season, and occasionally on rotting logs.  The plants then disappear again as their habitat is flooded during the rainy season.

The tiny rosettes are only a few mm high, though the spreading leaves may be as much as 2.5 mm long.  Leaves are toothed in the upper 2/3 and papillose (with small, translucent bumps) at the tip.  The midribs are weak, sometimes not evident at the base.  Leaf cells are irregularly long-rectangular and lined up in vertical rows.

The spherical spore capsules are also tiny and
often overlooked. Photo by Robert A Klips,
Ohio Moss and Lichen Association.
The spore capsules, when they appear, are also barely noticeable, as they lack a stalk and remain nestled in the center of the rosette.  The spherical capsules do not open regularly like most other mosses, lacking the typical mouth, teeth, and lids, but eventually rupture irregularly.

Ephemerum crassinervium is found widely in eastern North America, west to Texas and Nebraska, north to Saskatchewan, Ontario and Quebec (but not known in Maine), with some reports from Oregon.  In Florida, it has been sparsely collected from the panhandle to Collier County.

Two additional species have been reported from Florida.  E. cohaerens has been even more sparsely collected throughout north Florida, but not yet in central Floirda.  It differs from E. crassinervium in the smoother cells of the leaf tip, and the leaf cells lined up in diagonal rows.

E. spinulosum has a similar distribution as C. crassinervium, with some in Hillsborough and Manatee counties; cells of the leaf tip are spiny as opposed to smooth or papillose.

Saturday, October 7, 2017

Mosses of Central Florida 30. Atrichum angustatum

For other mosses in this series, see the Table of Contents]

Atrichum angustatum (Bridel) Bruch & Schimper (Polytrichaceae) is a relative of the common Polytrichum commune, but shorter in stature and with distinctly wavy leaves.  The upright stems are 1-2 cm tall, and like other members of the family, have vertical, fin-like sheets of tissue arising from the nidrib. Typically numbering about 10, these lamellae are also wavy.  Polytrichum has up to 20, and these are straight, compact and occupy most of the leaf surface. leaf cells are roundish and bulging to papillose  (with short, hard, translucent bumps).

The upward-facing rosettes of narrow, wavy leaves resemble a tiny bromeliad. The lamellae can be seen along the midrib,  running the length of the leaf. All photos by Robert A. Klips, Ohio Moss and Lichen Association. 
The wavy sheets of tissue, or lamellae, can be seen arising from the midrib.
Atrichum angustatum occurs throughout eastern North America, as far west as Nebraska and Texas, and as far north as Newfoundland. It can be found typically on exposed soil along roads and trails, as well as on soil exposed by fallen trees. It is uncommon in Florida, with just a few specimens from the northern part of the state down to Manatee County. It has been found in our area on creek banks and Indian mounds.


This reproductive specimen, with its narrowly cylindrical
sporangia, was photographed in Ohio.
This species may be limited in its abundance, in part, because male and female reproductive organs are borne on separate plants, which must occur in close proximity in order to form spores.  Sporangia, when found, are upright and narrowly cylindrical.






Saturday, September 30, 2017

The nearly forgotten art of comparative plant anatomy 2. Palm Fruits

Palm fruits are mostly single-seeded drupes, brightly colored
to attract birds or other animals for dispersal.  The large, hard,
seeds either pass unharmed through the digestive system
or are dropped to the ground as the fleshy pericarp is eaten.
From my brief introduction in "Everything you wanted to know about plant cells but were afraid to ask," you know that sclerenchyma is a collection of cells types characterized by the possession of a thick, rigid, secondary wall.  In the first part of this current series, I showed how sclerenchyma, along with other cell types, contribute to the complex and highly useful material we call wood.

Palm fruits may seem like an odd place to look for sclerenchyma, but I discovered early in my career as a plant taxonomist specializing in palms, that not only are such cell types present, but they are also highly varied in type and arrangement.  They represent an excellent case study for the usefulness of comparative plant anatomy.

One of the functions of sclerenchyma in general is to protect plant tissues from vegetation-chomping animals, and fruits are one of the most vulnerable of plant organs.  Fruits, and the seeds within, fill up with valuable nutrients as they mature.  The seeds must obviously be protected until they can be dispersed and have a chance to produce the next generation.  Fruits, however, are often meant to be eaten as part of that dispersal, but not until the seeds are mature.  So unripe fruits must be protected until then, but must become palatable, sometimes quickly and dramatically, at maturity.

The first layer of defense for the large seed within a palm fruit is something called the locular epidermis.  This is actually the interior epidermis of the  carpel that surrounds the seed proper.  In this layer, the cells often elongate perpendicular to the fruit wall, become pillar-like, closely-packed sclereids as the fruit matures.  Similar layers of cells have independently evolved in the seed coats of legumes.

A well-developed locular epidermis is common among palms of the subtribe Areceae (the large, advanced group that includes the betel nut, Areca catechu), but is quite varied in thickness,  even within genera.  Where it is not present, other forms of sclerenchyma take its place.

Another type of sclerenchyma found in palm fruits consists of individual cells resembling grains of sand, called brachysclereids or stone cells.  Those found in palms are similar to the gritty patches of stone cells found just below the epidermis in pear fruits.  Stone cells may be scattered within parenchyma tissue, grouped in clusters, or found in continuous layers.

In a great many palm fruits, there are also many fibrous bundles, consisting of  narrow, thick-walled fiber cells. As is generally true in vascular plants, fibers occur mostly around strands of vascular tissue (xylem and phloem), as protection for those tissues.  When additional protective functions (as in palm fruits) or supportive functions (i.e. in wood or the fibrous stems of palms and bamboos) are present, the volume of fibrous tissue can become massive and far in excess of what is needed to protect the vascular tissues. 
The fruits of Rhopaloblase ceramica have a very thick locular epidermis (bottom layer), consisting of elongate, pillar-like sclereids, packed tightly together. Above that, are three tiers of massive fibrous bundles that form around vascular tissues. In a band below the outer epidermis, are scattered stone cells (brachysclerieds), stained a purplish red. The very dark tissues present contain tannins.



Often intermixed with the fibrous vascular bundles close to the seed is a tissue with the seemingly oxymoronic name of sclerified parenchyma.  This is a region that begins as normal parenchyma in the young fruit, but become "sclerified" (develop secondary walls) as the fruit reaches its full size. In some of my earlier papers, I referred to this as "sclerified ground tissue," but that was too vague, as there are other forms of sclerenchyma in the ground tissue. (Ground tissue refers to the tissue  that fills the interior of leaves, stems, roots, and fruits, and consists mostly of parenchyma.

In the most specialized of the bird-dispersed palm fruits, we can usually see three distinct zones:

Close to the seed, we find densely packed fibrous bundles, sclerified parenchyma, and often a thickened locular epidermis. These hard tissues are typically fused together into a solid endocarp, or pit, which  remains with the seed when the rest of the fruit is removed.  This helps prevent the crushing of the seed when the fruit is eaten, or its penetration by burrowing insects.

Below the outer epidermis, one can often see an exocarp, a layer of stone cells, cells filled with bitter tannins, and sometimes fibrous bundles that protect against insect penetration.  Stone cells, which occur individually or in small patches, are particularly advantageous in this outer fruit region because they can loosen and separate as the fruit expands.  This allows the fruit to swell as it ripens, becoming more succulent.

Between these outer and inner protective layers, is the larger expanse of tissue referred to as the mesocarp.  This middle region may also be filled with fibrous bundles (the fibrous outer husk of the coconut being an extreme example), but in many specialized fruits it has been cleared of hard tissues, and consists only of soft parenchyma, which can swell as the fruit ripens, becoming fleshy, tasty and nutritious.  Such fruits presumably provide the most food for birds that feed upon them, and so  have a selective advantage.

Such well-defined zones are particularly conspicuous in the Ptychosperma alliance, which I studied as a graduate student.  In this group of palms native to New Guinea, Australia and some Pacific islands, another extraordinary transformation has taken place: the evolution of two radically different kinds of fibrous bundles, one occupying the endocarp, the other occupying the exocarp.

In Heterospathe, "naked" bundles of vascular
tissue are at the bottom, close to the seed, while
bundles further out contain only fibers.
The starting point for this trend can be seen in some palms outside of the Ptychosperma alliance, such as the Rhopaloblaste illustrated above, in which only the inner vascular bundles have a significant amount of vascular tissue, while the outermost bundles have a token amount, if any, and consist mostly of fibers. In the Heterospathe illustrated to the left, fibrous bundles without any vascular tissue are scattered throughout the mesocarp.

In the short spurs of fibers
in Orania, bits of
vascular tissue (ladder-like
protoxylem element in center)
can be found, illustrating the
role procambia in forming
fibrous bundles.
As another example, in the genus Orania, there are short, brush-like bundles of fibers that arise perpendicular to naked vascular bundles. They appear at first to be purely fibrous, but occasionally one can find a trace of mature vascular tissue within them.  This suggests that all fibrous bundles begin with a strand of embryonic vascular tissue (a procambium) as the organizational stimulus, but in specialized bundles, vascular tissues may or may not mature.












In Veitchia, inner bundles contain small
strands of vascular tissue (white spots)
and thick fibrous sheaths. Bundles in the
outer half of the fruit are purely fibrous.
Legend applies to all the diagrams.









In Veitchia, the outer fibrous bundles
are elongate and parallel with the
surface, but can separate from one
another as the fruit expands.

In the least specialized members of the Ptychosperma alliance, such Veitchia and Normanbya, fibrous bundles have already been separated into two distinct groups, the inner bundles have at least some vascular tissue and form an interconnected network, while the outer bundles are devoid of vascular tissue altogether, and become disconnected from one another as the fruit expands.

In the remaining genera of the Ptychosperma alliance, the outer fibrous bundles have become quite short and clearly separate from one another.  They are confined to the exocarp and are mixed with the brachysclereids.  Variation on the arrangement of tissues, however, is significant, and can be used to identify the different genera.  Some examples are below, but so that this post won't get too long, I refer you to my original paper on the Ptychosperma alliance, for more details. Similar trends can be seen in the other alliances of the subtribe Areceae, also with distinctive arrangements in different genera, and papers on those can be accessed through my general list of publications.


In Ptychosperma and other advanced genera, inner
fruit tissues follow the distinctive grooves
of the seed. The outer fibrous bundles are small,
short, and perpendicular to the surface. 
In Ptychosperma, outer fibrous bundles are short
and perpendicular to the surface. Brachysclereids
fill in between them.



An isolated  outer fibrous bundle from
Brassiophoenix.
The large fruits of Ptychococcus have an
exceptionally thick, hard endocarp,
consisting of a thick locular epidermis, a
massive layer of sclerified parenchyma, and
a mantle of fibers formed from the fusion of
adjacent fibrous vascular bundles. Short
fibrous bundles also mingle with
brachysclereids in the exocarp.

The fruits of Brassiophoenix have an angular
endocarp, like that of Ptychococcus, but with
the fibrous vascular bundles embedded within
the sclerified parenchyma.

Thursday, September 21, 2017

Mosses of Central Florida 29. Plagiomnium cuspidatum

Plagiomnium cuspidatum
The upright stems with broad ovate leaves and nodding capsules of
Plagiomnium cuspidatum suggest a species of the Bryaceae until one
takes a closer look.
Photo by Robert A. Klips, Ohio Moss and Lichen Association
(Hedwig) T.J. Koponen (Mniaceae)forms mats on moist soil, on rotting logs, or at the bases of trees in moist habitats, and has two forms of leafy stems; creeping sterile stems, and upright fertile stems.  Our local material appears to be all sterile, however.

The most distinctive characteristic of this species is its ovate to diamond-shaped leaf with a prominent midrib and conspicuous, narrow, sharp teeth in the upper half.  The leaf base is broad and clasps the stem.  The leaf cells are roundish, with thick, translucent walls. The leaves are twisted when dry.  The nodding, cylindrical to ovate capsules arise on elongate stalks from erect leafy stems.

The leaf of Plagiomnium cuspidatum  resembles that of a Bryum, but with 
many long, narrow teeth along the edge in the upper half.
Photo courtesy the Western New Mexico University
Department of Natural Sciences and the Dale A. Zimmerman
Herbarium,, Plants of the Gila Wilderness.
The nodding capsules are a plump, ovate-
cylindrric. Photo by Robert A. Klips, Ohio 
Moss and Lichen Association
This species, often filed under the older name of Mnium cuspidatum, is widespread in North America, even reaching Alaska and Greenland, and in Florida it is found from the panhandle to Miami-Dade County. Two other species are found in the state: P. ciliare only in the panhandle, and P. floridanum throughout the northern half of the state.  In P. ciliare the marginal teeth typically extend down toward the base, rather than just the upper half, and these are usually blunt.  P. floridium is nearly  indistinguishable, but the leaves more elliptical and with less flaring leaf bases.

The prominent, narrow teeth arise from a thickened border of rigid cells.  To the inside, cells are small, rounded, and thick-walled.  Photo from Wikimedia Commons,  licensed by Creative Commons..
This upright, fertile stems of this species might also be confused with members of the Bryaceae, such as Bryum argenteum, or Rosulabryum capillare, which also have broad leaves with a strong costa and nodding capsules, but their leaves do not have prominent teeth and their cells are much larger and more elongate.
.

Monday, September 4, 2017

Mosses of Central Florida 28. Climacium americanum

Photo courtesy Robert A. Klips, Ohio Moss and Lichen Association.
Climacium americanum Bridel (Climaciaceae) is a distinctive moss with a "tree-like" shape, and often of a yellow-green color.  It has upright stems that branch out into a number of spreading, leafy branches. It occurs in our area in wet habitats, most often on decaying logs in cypress swamps, but elsewhere in damp soil along rivers or marshy depressions.

In Florida, this species is distributed from the northern counties southward to Manatee County, with some records from Broward and Monroe counties.  It also occurs widely northward in the eastern U.S. and Canada, the Rocky Mountains,  Pacific Northwest, and Alaska.

The leaf has a distinct midrib, which tapers out just short of the leaf tip, jagged teeth in the upper part, a broad, spreading base without inflated cells, and cells that are "worm-like" (elongate,  tapered, and slightly wavy). Between the leaves are many branching, thread-like appendages called paraphyllia.

The broad leaf base and tapered tip of the leaf of Climacium americanum 
give it a triangular shape. Photo courtesy Robert A. Klips, Ohio Moss and
Lichen Association/
The spore capsules are erect, symmetrical, and narrowly cylindrical.

Although it was collected a number of times in our local Hillsborough River Basin in the 1970's, I have yet to find living specimens myself.  So I am grateful to Bob Klips of the Ohio Moss and Lichen Association for the use of his photos.
The worm-like cells of Climacium can be seen in this photo from Wikimedia
Commons of C. dendroides (not in our area).